Stability and Conformational Resilience of Protein Disulfide Isomerase
نویسندگان
چکیده
منابع مشابه
Protein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions
Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...
متن کاملProtein Disulfide Isomerase and Host-Pathogen Interaction
Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra-...
متن کاملCompact Conformations of Human Protein Disulfide Isomerase
Protein disulfide isomerase (PDI) composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI) in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in s...
متن کاملPlasticity of Human Protein Disulfide Isomerase
Protein disulfide isomerase (PDI), which consists of multiple domains arranged as abb'xa'c, is a key enzyme responsible for oxidative folding in the endoplasmic reticulum. In this work we focus on the conformational plasticity of this enzyme. Proteolysis of native human PDI (hPDI) by several proteases consistently targets sites in the C-terminal half of the molecule (x-linker and a' domain) lea...
متن کاملScanning and escape during protein-disulfide isomerase-assisted protein folding.
During oxidative protein folding, efficient catalysis of disulfide rearrangements by protein-disulfide isomerase is found to involve an escape mechanism that prevents the enzyme from becoming trapped in covalent complexes with substrates that fail to rearrange in a timely fashion. Protein-disulfide isomerase mutants with only a single active-site cysteine catalyze slow disulfide rearrangements ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemistry
سال: 2019
ISSN: 0006-2960,1520-4995
DOI: 10.1021/acs.biochem.9b00405